Imaging evaluation of 5HT2C agonists, [(11)C]WAY-163909 and [(11)C]vabicaserin, formed by Pictet-Spengler cyclization

J Med Chem. 2014 Feb 27;57(4):1488-94. doi: 10.1021/jm401802f. Epub 2014 Feb 12.

Abstract

The serotonin subtype 2C (5HT2C) receptor is an emerging and promising drug target to treat several disorders of the human central nervous system. In this current report, two potent and selective 5HT2C full agonists, WAY-163909 (2) and vabicaserin (3), were radiolabeled with carbon-11 via Pictet-Spengler cyclization with [(11)C]formaldehyde and used in positron emission tomography (PET) imaging. Reaction conditions were optimized to exclude the major source of isotope dilution caused by the previously unknown breakdown of N,N-dimethylformamide (DMF) to formaldehyde at high temperature under mildly acid conditions. In vivo PET imaging was utilized to evaluate the pharmacokinetics and distribution of the carbon-11 labeled 5HT2C agonists. Both radiolabeled molecules exhibit high blood-brain barrier (BBB) penetration and nonspecific binding, which was unaltered by preadministration of the unlabeled agonist. Our work demonstrates that Pictet-Spengler cyclization can be used to label drugs with carbon-11 to study their pharmacokinetics and for evaluation as PET radiotracers.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Azepines / chemistry*
  • Carbon Radioisotopes / chemistry*
  • Cyclization
  • Heterocyclic Compounds, 4 or More Rings / chemistry*
  • Indoles / chemistry*
  • Positron-Emission Tomography
  • Serotonin Receptor Agonists / chemistry*

Substances

  • 1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta(b)(1,4)diazepino(6,7,1hj)indole
  • Azepines
  • Carbon Radioisotopes
  • Heterocyclic Compounds, 4 or More Rings
  • Indoles
  • Serotonin Receptor Agonists
  • vabicaserin